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Abstract
Two-dimensional, hard-body systems of cyclic multimers (pentamers and
heptamers) are studied by Monte Carlo simulations. Elastic properties (the
elastic constants and the Poisson ratio) are computed for hexagonal solid phases
with molecular rotation by using an algorithm based on the strain-fluctuation
method. In both systems a minimum of the Poisson ratio is observed at the same
density at which a qualitative change of the orientational singlet distribution
function occurs. This result confirms that, in each of the studied systems, a
phase transition occurs between two elastically isotropic solid phases exhibiting
orientational disorder: a higher-density phase with (strongly) hindered rotation
and a lower-density phase with (almost) free rotation. The study also suggests
that it is worth paying more attention to the dependence of the Poisson ratio
on the thermodynamic variables (volume, pressure or temperature) in solids
because this quantity can play the role of a sensitive indicator of (at least some)
structural phase transitions.

1. Introduction

It is well known that hard-molecule potential, infinite when molecules overlap and zero
otherwise, can model various thermodynamically stable and metastable phases both in two and
three dimensions. The simplest hard molecules, hard spheres and hard discs, have been used to
model simple liquids [1–5], melting process [6,7] and glasses [8]. Hard molecules composed of
a few spheres have been applied to study the properties of molecular liquids [9–12]. Other hard
molecules convenient to model fluids are hard convex bodies [13] and their generalization, hard
star-shaped bodies [14]. Oblate and prolate hard molecules [15–18] as well as hard bodies of
more complicated shapes [19–24] have been exploited in computer simulations and theoretical

1 Author to whom any correspondence should be addressed.

0953-8984/02/061261+13$30.00 © 2002 IOP Publishing Ltd Printed in the UK 1261

http://stacks.iop.org/cm/14/1261


1262 K V Tretiakov and K W Wojciechowski

σ

a ) b )

ϕ ψ

Figure 1. The molecules studied: (a) the hard cyclic pentamer, (b) the hard cyclic heptamer. The
diameter of the discs is σ . (In the text σ is considered as a unit of length.)

studies of liquid crystalline phases. Globular hard molecules have been used to model structural
(orientational) phase transitions in solids [16, 25, 26].

Studies of hard-body models have shown that interesting effects can be observed even in
two dimensions for as simple molecular shapes as hard cyclic multimers which are composed of
identical hard discs (‘atoms’) centred at vertices of perfect polygons with sides equal to the disc
diameter σ . Extensive studies performed for this class of homo-molecular, two-dimensional
hard-body systems [25–40] revealed rich phase diagrams [25, 26], unexpected atomic density
distributions [27, 35, 36, 40] and have shown that purely geometrical interactions can lead
to surprising effects like, for example, phase transitions between solid phases of the same
(hexagonal) symmetry [25,28,29], negative Poisson ratio [31,32,38,39] or thermodynamically
stable aperiodic solid structures [30, 33, 34, 37]. These results indicate that further studies of
the hard cyclic multimer systems are of interest.

In this paper, we consider two planar, hard cyclic multimer systems: hard cyclic pentamers
and hard cyclic heptamers, further referred to as pentamers and heptamers, respectively, see
figure 1. The pentamer and the heptamer are non-convex but star-shaped molecules [14]. It is
worth adding that both these molecules contain axes forbidden in crystals.

It has been suggested that for each of the molecules a phase transition occurs between
two (isotropic from the point of view of the elastic properties) rotational phases of different
orientational order [36, 38]. It is interesting to know whether such a transition (which is so
smooth that it is not seen in the equation of state of the system) influences the elastic properties
of the system.

The phase diagram of the pentamer system has already been studied by mechanical
simulations [27] and by computer simulations [35, 36, 40]. The mechanical simulations
revealed four qualitatively different structures in this system: a high-density anisotropic solid
with frozen molecular rotation, two—high-density and low-density—hexagonal solids with
rotating molecules, and a fluid at low densities. In the high-density hexagonal solid the ‘atomic’
density distributions around the lattice sites showed clearly sixfold symmetry and the molecular
rotation was strongly hindered. In the low-density hexagonal solid the atomic density profiles
around the lattice sites were practically circular and the molecules were rotating almost freely.
Only two first-order phase transitions were detected when the structure and equation of state
of the system was studied by computer simulations [35]: the first transition corresponded to
rotational ‘melting’ of the anisotropic solid into a hexagonal solid and the second transition
corresponded to ‘translational’ melting of the hexagonal solid into fluid. A careful analysis of
the translational–rotational coupling showed, however, a change of the orientational ordering
in the system [36] in the density range where a phase transition between strongly hindered and
almost free rotation was observed in mechanical simulations.
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The system of heptamers has been studied by computer simulations only recently [38].
Its phase diagram is similar to that of the pentamers, except in the highest density range where
a few crystalline structures without molecular rotation have been observed, instead of a single
one observed in the case of the pentamer system. (The thermodynamic stability ranges of these
phases have not yet been fixed.) At the densities below the orientational melting, an analysis
of the atomic density distribution around lattice sites in the heptamer system also suggested a
continuous phase transition from strongly hindered to almost free rotation in hexagonal solids.
Further decrease of the density led to ‘translational’ melting.

The aim of the present work is twofold. Firstly, by showing that changes of the orientational
order in both systems coincide with extrema of their Poisson ratios we provide a new argument
in support of a phase transition between hindered and free rotation. (This observation suggests
also that the Poisson ratio can play a role of a sensitive indicator of, at least some, structural
phase transformations in solids.) Secondly, we present accurate data concerning the values
of elastic constants in well defined model systems interacting by anisotropic and extremely
anharmonic potentials. These data, which supply information on the convergence of the strain
fluctuation method, can be used to test theoretical approximations for calculating the elastic
constants of molecular crystals.

2. Simulation technique

The Monte Carlo (MC) method [41] is a particularly simple and efficient technique for studying
the equilibrium properties of complex hard-molecule systems when performed at constant
pressure. The advantage of this approach with respect to the molecular dynamics is that
one avoids integration of complicated equations of motion. One also avoids cumbersome
statistical–mechanical calculations which are necessary to compute pressure in the constant-
density MC simulations.

Constant-pressure studies of hard-body fluids are usually performed at fixed shape of the
periodic box [42]. In solids, however, using variable shape of the periodic box [29] is preferable
because the system can then easily eliminate internal strains caused by any misfit of the unit
cell and the sample shape. The MC simulations of pentamers and heptamers described in this
paper were performed in the NPT ensemble of variable shape. This technique also allows
one to easily determine the elastic properties of hard-body systems.

Various methods for simulations of elastic properties of model systems have been
proposed [31,43–60]. In general, the methods with fixed shape of the system seem to converge
better than those with variable box shape [52]. The former, however, require performance of
many runs around the reference state, which must be known (or determined) in advance.
Moreover, most of these methods (the exception is the Frenkel–Ladd method [50,60] based on
numerical differentiation of the free energy which is computed for a considered system exposed
to various deformations around its reference state) require computation of the pressure or even
its derivatives [43, 56] which are expressed by rather complicated formulae in the case of
anisotropic and non-central molecular interactions.

The present computations of the elastic properties were performed by a version [55] of
the strain-fluctuation method [44, 46, 47]. As mentioned above, this method converges more
slowly than methods with fixed box shape [45,59]. This disadvantage is, in our opinion, fully
compensated by the simplicity of the method as well as the fact that all the elastic constants are
calculated within a single run during which the (equilibrium) reference state is also determined.

To check how the simulation results depend on the number of particles in the system
and on the shape of the periodic box, the simulations were carried out for two system
shapes, each represented by three system sizes. For the hexagonal phases studied, the
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local structure of all the systems studied corresponded to a hexagonal lattice. Samples of
the hexagonal lattice of shapes close to the square were chosen to minimize the anisotropy
induced by the periodic box. (It is worth mentioning here that large anisotropy of the box
may qualitatively modify the thermodynamic properties of the studied system [61,62].) Thus,
the average aspect ratio for the systems consisted of N = 30, 120, 480 particles was close
to α ≡ Ly/Lx = (6 × √

3/2)/5 = 1.039 23 . . . , whereas for the other systems studied,
consisting of N = 56, 224, 896, it was close to α = (8 × √

3/2)/7 = 0.989 74 . . . . The
obtained data were used to estimate values of the computed quantities in the thermodynamic
limit. The number of the simulation steps for the studied systems varied from 3 × 106 up to
5 × 107 trial steps per particle (cycles), depending on the system size. Equilibration runs took
typically 10% of the simulation length.

3. Orientational probability density

The orientational singlet distribution function (OSDF), normalized to 2π and proportional to
the probability density that a particle has a given orientation, provides a basic information on
the orientational order. The OSDFs for the systems studied were calculated as histograms from
−C to C with a bin length � = C/83 (where C = π/5, π/7 for pentamers and heptamers,
respectively) and averaged over all the molecules in the system and over the full length of the
runs after equilibration.

The OSDF of the pentamer system in the hexagonal crystalline phases with molecular
rotation can be well approximated by the function [36]

P(ϕ) = 1 + A30 cos(30ϕ) (1)

where A30 is a coefficient and ϕ is the orientation of the pentamer molecule. (The coefficient
index 30 in (1) comes from the group theoretical analysis: it corresponds to the lowest symmetry
axis which contains both the fivefold symmetry axis of the pentamer and the sixfold symmetry
axis of the hexagonal lattice.) The fivefold symmetry of the pentamer molecule implies that
one can restrict the range of the angle in the OSDF to ϕ ∈ (−π/5, π/5).

Similarly, the expression approximating the OSDF of heptamer systems in the hexagonal
crystalline phases reads

P(ψ) = 1 + A42 cos(42ψ) (2)

where A42 is a coefficient (the index 42 corresponds to the lowest symmetry axis which
contains both the sevenfold symmetry axis of the heptamer and the sixfold symmetry axis
of the hexagonal lattice) and ψ is the orientation of the heptamer molecule. The sevenfold
symmetry of the heptamer molecule implies that one can restrict the range of the angle to
ψ ∈ (−π/7, π/7).

Examples of the OSDF for pressures (we use the dimensionless pressure, p∗ = pσ 2/kBT )
representing high-density and low-density hexagonal solids for pentamers and heptamers are
shown in figure 2. The values of the coefficients A30 and A42 decrease with decreasing pressure
(or density). For densities ρ∗ � 0.831(3) the pentamer OSDF becomes flat and A30 is zero
within the accuracy of the experiment, see figure 3(a). Similar behaviour is found in the
heptamer systems for the coefficient A42 at densities ρ∗ � 0.880(3), see figure 3(b). These
results show that at low densities the molecular orientations both in the pentamer system
and in the heptamer system are uniformly distributed over the circle. One can see also that
the system size does not show noticeable influence on the calculation results of the OSDF
and the coefficients A30 and A42 (see figure 3). So, the present results can be thought of as
representative for the thermodynamic limit.
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Figure 2. The OSDF: (a) for the pentamers at p∗ = 5 (×) and at p∗ = 1.8 (+), (b) for the heptamers
at p∗ = 5 (×) and at p∗ = 1.2 (+).
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Figure 3. Density dependences of the OSDF constants: (a) A30 for pentamers, (b) A42 for
heptamers. The numbers of particles in the systems are N = 56 (+), N = 224 (×), N = 896 (�).
The results obtained in [36] are marked by open circles. The dimensionless density is defined as
ρ∗ = ρ/ρ0, where ρ0 is the density at close packing which is ρ

(5)
0 ≡ (0.196 32 . . .)σ−2 [40] for

the pentamers and ρ
(7)
0 ≡ (0.119 78 . . .)σ−2 for the heptamers [38, 39].

4. Elastic properties

The studied structures of the orientationally disordered solid phases both for pentamers and
heptamers show hexagonal lattices. Such lattices are isotropic from the point of view of the
(second order) theory of elasticity [63]. Thus, as in the case of isotropic bodies, their elastic
properties can be described by only two elastic moduli [63]. The role of these parameters can
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be played, for example, by λ1 and λ2 (for other choices of the parameters see below) which
are defined by the following free energy expansion

�Felastic/Vref = −p(εxx + εyy) + 2λ1(εxx + εyy)
2 + λ2[(εxx − εyy)

2 + 4ε2
xy] (3)

where �Felastic is the free energy change corresponding to the elastic deformation described
by the (Lagrange) strain tensor εij ≡ (∂ixj + ∂jxi +

∑
k ∂ixk∂jxk)/2, and Vref is the volume

of the reference state.
At constant pressure it is, however, more convenient to use elastic moduli, λ̄1 and

λ̄2, obtained by the free enthalpy (Gibbs free energy) expansion instead of the free energy
expansion [64]. This is so because expanding the free enthalpy at a non-zero pressure one
obtains a pure quadratic form (without linear terms) in the strain components:

�G/Vp ≡ �(Felastic + pV )/Vp = 2λ̄1(εxx + εyy)
2 + λ̄2[(εxx − εyy)

2 + 4ε2
xy] (4)

where Vp is the volume at equilibrium at the pressure p (reference volume), and V is the
volume of the deformed system. There is a simple relation between the bared and not bared
elastic moduli [64]:

λ̄1 = λ1 (5)

λ̄2 = λ2 − p/2. (6)

The following relations come from equation (4):

〈(εxx + εyy)
2〉 ≡

∫
dεxx

∫
dεyy

∫
dεxy (εxx + εyy)

2 exp (−�G/kT )
∫

dεxx
∫

dεyy
∫

dεxy exp (−�G/kT )
= kT

4λ̄1Vp

(7)

〈(εxx − εyy)
2〉 ≡

∫
dεxx

∫
dεyy

∫
dεxy (εxx − εyy)

2 exp (−�G/kT )
∫

dεxx
∫

dεyy
∫

dεxy exp (−�G/kT )
= T

2λ̄2Vp

(8)

〈(εxy)2〉 ≡
∫

dεxx
∫

dεyy
∫

dεxy (εxy)
2 exp (−�G/kT )

∫
dεxx

∫
dεyy

∫
dεxy exp (−�G/kT )

= kT

8λ̄2Vp

(9)

where k is the Boltzmann constant and T is the temperature.
Introducing the elastic compliances

Sijkl = Vp

kBT
〈εij εkl〉 (10)

one obtains

λ̄1 = 1

8(Siiii + Sxxyy)
λ̄2 = 1

4(Siiii − Sxxyy)
λ̄2 = 1

8Sxyxy

(11)

where i = x, y and the symmetry of the system, leading to Sxxxx = Syyyy , is exploited; no
summation over the repeated indices is performed.

Computation of the averages in the form given by (7)–(9) requires knowing the reference
state before the simulations. One can avoid this, however, in the way sketched below.

The integrals over εij can be converted to integrals over independent components of the
box matrix hij whose columns are formed by the components of the vectors describing the
periodic box [65]. (We should mention here that, as in [55], in this work the box matrix was
kept symmetric during the simulations to avoid rotation of the system [66].) The strain tensor
can be expressed by the box matrix as follows:

ε ≡ ε(h) = (h−1
ref · h · h · h−1

ref − I)/2 (12)

where h−1
ref is the matrix inverse to the reference box matrix href which is taken as the average

(equilibrium) box matrix, hp, at the pressure p; I is the unit matrix. The average (equilibrium)
volume at the pressure p is calculated as

Vp = |〈det(h)〉|. (13)
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Figure 4. The density dependences of the bulk modulus (×) and the shear modulus (�) of the
pentamer systems (left) and the heptamer systems (right) for N = 56. Arrows indicate the points
where the OSDF functions change character from oscillating to flat.

Denoting the Jacobian of the transformation h → ε by j (h) one can express the averages in
equations (7)–(9) by the ratios of averages with respect to h:

〈εij εkl〉 = 〈εij (h)εkl(h)j (h)〉h/〈j (h)〉h. (14)

Equation (14) states that the simulation can be performed without knowing the structural
parameters of the system at equilibrium. The crucial point here is the fact that ‘microscopic
enthalpy’, NkT ln V − U + pV , can be expressed by the ‘instantaneous’ components of the
box matrix only2. (U ≡ U(s(N),Ω(N),h) denotes the energy of a configuration of the system,
described by the ‘normalized’ (rescaled) positions of all the particles, si = h−1 · ri (i =
1, . . . , N), their orientations, +i(i = 1, . . . , N), and the box matrix h.) So, its calculation
does not require the knowledge of the reference (equilibrium) state. (This is in contrast to
the calculations performed in the constant thermodynamic stress ensemble [53], where the
microscopic enthalpy directly depends, in general, on the strain tensor components.) Thus,
one can perform the simulations without knowing the equilibrium state in advance. The values
of the box matrix components, hij , are stored during the simulations. After finishing the run,
the obtained data are analysed and the average (equilibrium) values of the components of the
box matrix, (href )ij , are calculated (see the appendix). The calculated equilibrium values are
used to compute the strain tensor components, εij , which, in turn, makes calculation of the
elastic compliances possible.

Remark. We should stress here that the relation (11) holds in the constant-pressure ensemble.
For the compliances computed in the constant thermodynamic tension ensemble one should
replace the bared moduli by the non-bared ones [53].

The elastic properties of an elastically isotropic system are often described by the bulk
modulus, B, and the shear modulus, µ, which are proportional to λ̄1 and λ̄2, respectively:

B = 4λ̄1 (15)

µ = 2λ̄2 ≡ 2λ2 − p. (16)

Figure 4 shows that B, µ do not exhibit any peculiarities at the densities where one observes
the OSDF change from flat to oscillating.

In figure 5 we show λ1, λ2 as functions of reduced density. No indications of any phase
transition can be seen there.
2 The microscopic enthalpy is the logarithm of the Boltzmann factor multiplied by kT . In fact, it is enough that the
extensive part of the microscopic enthalpy does not depend explicitly on the reference state.
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Figure 5. The density dependences of the elastic constants λ1 (+), λ2 (◦) of the pentamer systems
(left) and the heptamer systems (right) for N = 56. Arrows indicate the points where the OSDF
functions change character from oscillating to flat.
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Figure 6. The density dependences of the Young modulus of the pentamer systems (left) and the
heptamer systems (right). The numbers of particles in the systems are N = 56 (+), N = 224
(×), N = 896 (�). Arrows indicate the points where the OSDF functions change character from
oscillating to flat.

Another way to describe an elastically isotropic system is by using Young’s modulus, E,
and the Poisson ratio, ν. In figure 6 we show the density dependences of the Young modulus

E = 4Bµ

B + µ
= 16λ̄1λ̄2

2λ̄1 + λ̄2
(17)

both for pentamers and heptamers. The arrows indicate the densities where the OSDF changes
for each system. No indication of any phase transition can be seen there either.

The Poisson ratio is defined as the negative ratio of the transverse strain to the longitudinal
strain caused by infinitely small change of the diagonal component of the stress acting in the
longitudinal direction [63]. The Poisson ratio of the 2D system under isotropic pressure is [53]

ν = B − µ

B + µ
= 4λ̄1 − 2λ̄2

4λ̄1 + 2λ̄2
. (18)

The density dependences of the Poisson ratio both for the pentamers and the heptamers are
shown in figure 7. It is easy to see there that both these dependences have clear minima. For
the pentamer systems the Poisson ratio reaches its minimum at the density ρ∗ ≈ 0.830(5)
(figure 7(a)). As has been mentioned, below this density the particles in the pentamer system
show a uniform distribution of orientations over a circle. The Poisson ratio of the heptamer
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Figure 7. The density dependences of the Poisson ratio of the pentamer systems (left) and the
heptamer systems (right). The numbers of particles in the systems are N = 56 (+), N = 224
(×), N = 896 (�). Arrows indicate the points where the OSDF functions change character from
oscillating to flat.
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Figure 8. The density dependences of the elastic compliances Sxxxx (×), Syyyy (+), Sxyxy (♦),
Sxxyy (◦), Sxxxy (�), Syyxy (�) of the pentamer systems (left) and the heptamer systems (right).
The data presented were obtained for systems which consisted ofN = 56 particles. Arrows indicate
the points where the OSDF functions change character from oscillating to flat.

system reaches its minimum at the densityρ∗ ≈ 0.881(5), see figure 7(b), which coincides with
the density at which the OSDF changes. Thus, in both systems studied, the observed extrema of
the Poisson ratio correspond to qualitative changes of the orientational order expressed by the
decay of oscillations in the OSDF. This result can be thought of as a new argument confirming
the existence of the orientational phase transition in the rotational solids of pentamers and
heptamers. As the Poisson ratio, expressed by quantities that are second-order derivatives of
the free energy, does not show any discontinuity, this transition should therefore be higher than
second order, according to Ehrenfest’s classification of phase transitions.

Finally, in figure 8 the density dependences of the elastic compliances Sij are shown. They
also do not reveal any peculiarities in the density range studied.

It is worth stressing that the transitions studied are not seen in quantities describing
the elastic properties other than the Poisson ratio. This can be understood if one notes
that the Poisson ratio is a dimensionless quantity being a ratio of the elastic compliances,
ν = −Sxxyy/Sxxxx . Changes of the latter, as well as changes of the elastic constants, in the
smooth transitions may be not easily visible, for example, because of their steep dependences
on the density or pressure.
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Table 1. The elastic moduli of the pentamer systems.

N p∗ ρ∗ λ1 λ2 ν MC cycles

30 1.8 0.7730(3) 2.43(4) 2.82(5) 0.433(16) 2 × 106

56 1.8 0.7731(3) 2.41(3) 2.88(4) 0.418(12) 3 × 106

120 1.8 0.7733(2) 2.40(5) 2.86(5) 0.420(18) 5 × 106

224 1.8 0.7738(1) 2.44(4) 2.93(4) 0.412(14) 107

480 1.8 0.7741(1) 2.43(3) 2.95(3) 0.407(11) 1.5 × 107

896 1.8 0.7741(1) 2.45(2) 2.96(2) 0.408(7) 3 × 107

∞ 1.8 0.7742(1) 2.44(3) 2.95(3) 0.408(12)

30 3.0 0.8338(4) 5.99(8) 6.77(8) 0.389(11) 2 × 106

56 3.0 0.8344(3) 6.05(8) 6.89(10) 0.384(12) 3 × 106

120 3.0 0.8449(3) 6.03(7) 6.98(7) 0.375(10) 5 × 106

224 3.0 0.8350(2) 6.12(7) 7.08(7) 0.374(9) 107

480 3.0 0.8351(1) 6.03(7) 7.04(7) 0.370(9) 2 × 107

896 3.0 0.8352(1) 6.10(7) 7.01(7) 0.378(9) 3.5 × 107

∞ 3.0 0.8353(1) 6.08(7) 7.06(7) 0.372(9)

30 5.0 0.8806(4) 13.3(3) 12.9(3) 0.438(20) 2 × 106

56 5.0 0.8808(3) 13.6(3) 13.1(3) 0.439(19) 3 × 106

120 5.0 0.8810(2) 13.5(2) 13.2(2) 0.432(13) 5 × 106

224 5.0 0.8810(2) 13.7(2) 13.4(2) 0.431(13) 107

480 5.0 0.8811(1) 13.9(2) 13.2(2) 0.444(13) 2 × 107

896 5.0 0.8811(1) 13.9(2) 13.3(2) 0.440(13) 5 × 107

∞ 5.0 0.8812(1) 13.8(2) 13.3(2) 0.438(12)

Examples of the values obtained for λ1 and λ2 in the pentamer systems and in the heptamer
system are presented in tables 1 and 2, respectively. It can be seen there that the elastic moduli
of both systems depend weakly on the system size. Results obtained for systems as small as
N = 56 were found to differ by only a few (three) per cent from those obtained by extrapolating
a perfect crystal to the thermodynamic limit.

5. Summary and conclusions

MC calculation of the elastic moduli and the Poisson ratio have been carried out in systems
of pentamers and heptamers in the density ranges where the molecular rotation is observed in
hexagonal solid phases. It has been shown that in both these systems one observes a minimum
of the Poisson ratio at the same density where the orientational probability density shows a
qualitative change from an oscillating one to a flat one. This fact can be interpreted as a new
argument supporting the existence of a phase transition between hindered and free rotation in
these systems. Within the Ehrenfest classification, this transition should be of order higher
than two.

The present analysis shows that the Poisson ratio is sensitive to rather subtle structural
changes (changes of orientational order) in the two-dimensional models studied. The question
of to what extent the present result can be generalized on a variety of structural phase transitions
which can occur in two and three-dimensional systems remains open. However, the present
analysis clearly indicates that the Poisson ratio is worth taking into account in studies of phase
transitions in solids. In the context of the observation done by Evans [67] who noticed that
‘. . . it is surprising how often the value of ν is not measured but assumed to be about 1/3 . . .’
this conclusion may be also of some interest for material scientists.
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Table 2. The elastic moduli of the heptamer systems.

N p∗ ρ∗ λ1 λ2 ν MC cycles

30 1.2 0.7999(5) 1.80(4) 2.00(5) 0.440(21) 2 × 106

56 1.2 0.8000(4) 1.78(3) 2.10(4) 0.407(16) 3 × 106

120 1.2 0.8002(3) 1.80(2) 2.05(6) 0.425(16) 5 × 106

224 1.2 0.8003(2) 1.84(3) 2.14(3) 0.410(14) 107

480 1.2 0.8005(1) 1.81(3) 2.14(3) 0.403(14) 1.5 × 107

896 1.2 0.8005(1) 1.85(3) 2.14(3) 0.412(14) 3.5 × 107

∞ 1.2 0.8005(1) 1.84(3) 2.14(3) 0.411(13)

30 2.75 0.8811(3) 8.38(9) 8.94(10) 0.378(9) 2 × 106

56 2.75 0.8817(2) 8.62(8) 9.23(11) 0.374(9) 3 × 106

120 2.75 0.8820(2) 8.75(12) 9.28(12) 0.378(11) 5 × 106

224 2.75 0.8821(1) 8.65(10) 9.36(11) 0.368(10) 107

480 2.75 0.8822(1) 8.81(8) 9.51(11) 0.368(8) 2 × 107

896 2.75 0.8823(1) 8.77(8) 9.50(9) 0.367(8) 3.5 × 107

∞ 2.75 0.8823(1) 8.78(9) 9.49(10) 0.368(9)

30 5.0 0.9167(3) 23.8(4) 20.4(4) 0.453(15) 2 × 106

56 5.0 0.9168(2) 23.9(3) 21.1(4) 0.440(13) 3 × 106

120 5.0 0.9169(2) 23.6(3) 21.3(3) 0.430(11) 5 × 106

224 5.0 0.9169(1) 23.7(4) 21.1(4) 0.436(15) 107

480 5.0 0.9170(1) 24.1(3) 21.3(3) 0.439(11) 2 × 107

896 5.0 0.9170(1) 24.0(3) 21.1(3) 0.441(11) 3.5 × 107

∞ 5.0 0.9170(1) 23.9(3) 21.2(3) 0.438(12)
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Appendix

Some details of computations of the reference box are shown below.
Let hxx, hyy, hxy = hyx denote the ‘instantaneous’ components of the box matrix. Their

average values, Hxx,Hyy,Hxy = Hyx , define the reference (equilibrium) box matrix:

Hij ≡ (href )ij = 〈hij 〉 ≡
∫

dεxx
∫

dεyy
∫

dεxy hij exp (−�G/kT )
∫

dεxx
∫

dεyy
∫

dεxy exp (−�G/kT )

=
∫

dhxx

∫
dhyy

∫
dhxy hij j (h) exp (−�G/kT )

∫
dhxx

∫
dhyy

∫
dhxy j (h) exp (−�G/kT )

=
∫

dhxx

∫
dhyy

∫
dhxy hij j (h) exp (−�G/kT )

∫
dhxx

∫
dhyy

∫
dhxy exp (−�G/kT )

×
∫

dhxx

∫
dhyy

∫
dhxy exp (−�G/kT )

∫
dhxx

∫
dhyy

∫
dhxy j (h) exp (−�G/kT )

≡ 〈hij j (h)〉h × 1

〈j (h)〉h (19)

where the strain tensor is defined by (12) and, hence, the Jacobian is

j (h) ≡ ∂
(
εxx, εyy, εxy

)

∂
(
hxx, hyy, hxy

) = (hxx + hyy)(h
2
xy − hxxhyy)

2(H 2
xy − HxxHyy)3

. (20)
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Substituting (20) into (19) and cancelling the factors 2(H 2
xy −HxxHyy)

3, which do not depend
on the instantaneous configuration of the box, the components of the reference box are given
by

Hij = 〈hij (hxx + hyy)(h
2
xy − hxxhyy)〉h

〈(hxx + hyy)(h2
xy − hxxhyy)〉h (21)

where

〈f 〉h ≡
∫

dhxx

∫
dhyy

∫
dhxyV

N
∫

ds(N)
∫

dΩ(N) f (s(N),Ω(N),h) exp(−(U + pV )/kT )
∫

dhxx

∫
dhyy

∫
dhxyV N

∫
ds(N)

∫
dΩ(N) exp(−(U + pV )/kT )

.
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